There are several ways to fix an ASIC-based design. >From easiest to most extreme:
An RTL fix means you change the Verilog/VHDL code and you resynthesize. This usually implies a new Plance&Route. RTL fixes would also imply new masks, etc. etc. In other words - start from scratch.
A Gate Fix means that a select number of gates and their interconections may be added or subtracted from the design (e.g. the netlist). This avoids resynthesis. Gate fixes preserve the previous synthesis effort and involve manually editing a gate-level netlist - adding gates, removing gates, etc. Gate level fixes affect ALL layers of the chip and all masks.
A Metal Fix means that only the upper metal interconnect layers are affected. Connections may be broken or made, but new cells may not be added. A Sewing Kit is a means of adding a new gate into the design while only affecting the metal layers. Sewing Kits are typically added into the initial design either at the RTL level or during synthesis by the customer and are part of the netlist. A Metal Fix affects only the top layers of the wafers and does not affect the "base" layers.
Sewing Kits are modules that contain an unused mix of gates, flip-flops or any other cells considered potentially useful for an unforseen metal fix. A Sewing Kit may be specified in RTL by instantiating the literal cells from the vendor library. The cells in the kit are usually connected such that each cell's output is unconnected and the inputs are tied to ground. Clocks and resets may be wired into the larger design's signals, or not.
A FIB Fix (Focussed Ion Beam) Fix is only performed on a completed chip. FIB is a somewhat exotic technology where a particle beam is able to make and break connections on a completed die. FIB fixes are done on individual chips and would only be done as a last resort to repair an otherwise defective prototype chip. Masks are not affected since it is the final chip that is intrusively repaired.
Clearly, these sorts of fixes are tricky and risky. They are available to the ASIC developer, but must be negotiated and coordinated with the foundry. ASIC designers who have been through enough of these fixes appreciate the value of adding test and fault-tolerant design features into the RTL code so that Software Fixes can correct mior silicon problems!
RTL Fix -> Gate Fix -> Metal Fix -> FIB Fix
First, let's review fundementals. A standard-cell ASIC consists of at least 2 dozen manufactured layers/masks. Lower layers consists of materials making up the actual CMOS transistors and gates of the design. The upper 3-6 layers are metal layers used to connect everything together. ASICs, of course, are not intended to be flexible like an FPGA, however, important "fixes" can be made during the manufacturing process. The progression of possible fixes in the manufacturing life cycle is as listed above.An RTL fix means you change the Verilog/VHDL code and you resynthesize. This usually implies a new Plance&Route. RTL fixes would also imply new masks, etc. etc. In other words - start from scratch.
A Gate Fix means that a select number of gates and their interconections may be added or subtracted from the design (e.g. the netlist). This avoids resynthesis. Gate fixes preserve the previous synthesis effort and involve manually editing a gate-level netlist - adding gates, removing gates, etc. Gate level fixes affect ALL layers of the chip and all masks.
A Metal Fix means that only the upper metal interconnect layers are affected. Connections may be broken or made, but new cells may not be added. A Sewing Kit is a means of adding a new gate into the design while only affecting the metal layers. Sewing Kits are typically added into the initial design either at the RTL level or during synthesis by the customer and are part of the netlist. A Metal Fix affects only the top layers of the wafers and does not affect the "base" layers.
Sewing Kits are modules that contain an unused mix of gates, flip-flops or any other cells considered potentially useful for an unforseen metal fix. A Sewing Kit may be specified in RTL by instantiating the literal cells from the vendor library. The cells in the kit are usually connected such that each cell's output is unconnected and the inputs are tied to ground. Clocks and resets may be wired into the larger design's signals, or not.
A FIB Fix (Focussed Ion Beam) Fix is only performed on a completed chip. FIB is a somewhat exotic technology where a particle beam is able to make and break connections on a completed die. FIB fixes are done on individual chips and would only be done as a last resort to repair an otherwise defective prototype chip. Masks are not affected since it is the final chip that is intrusively repaired.
Clearly, these sorts of fixes are tricky and risky. They are available to the ASIC developer, but must be negotiated and coordinated with the foundry. ASIC designers who have been through enough of these fixes appreciate the value of adding test and fault-tolerant design features into the RTL code so that Software Fixes can correct mior silicon problems!